汽车行业的快速发展促进了汽车电子行业的发展,混合动力车型(Hybrid Electric Vehicle,HEV)作为汽车行业的新发展方向,受到了国家的重视。从技术、节能减排效果、产业化能力等诸多方面考虑,混合动力具备了传统内燃机和电 动机的优势,将在较长一段时间内占据优势。混合动力车辆技术避免了纯电动车辆在电池技术和能源基础设施上的不足,成为近期新型车辆研究开发的热点。经过国 家“863计划”的支持与发展,我国的混合动力车辆技术正在迅速迈向产业化。
混合动力控制系统
实现混合动力车共有三个关键因素:能够对汽车运行状态详细监控的系统;分析监控系统所获取的信息,并发出相应的控制命令;相比一般电子系统,混合动力车电子控制系统工作在车内非常恶劣的环境,电磁干扰、振动、灰尘等都会造成技术上的瓶颈,如图1所示。
本文对混合动力车进行了研究,系统地分析了混合动力车的各个重要组成部分的核心技术,提出一种经济实用的混合动力车的控制系统的设计实例。该系统采用了先进 的计算机技术和总线技术,集智能控制、信号采集、数据处理和通信于一体,控制实时性好,实现了整车控制智能化和多传感器之间的有效融合。
动力控制策略系统
混合动力电动汽车由发动机和蓄电池共同提供动力,发动机和电动机可进行不同组合得到不同的驱动方案,如:串联、并联及混联。整车性能的好坏不仅与发动机和电 动机等部件有关,还与其控制策略和优化方法有关。按照能源组合的方式,混合动力电动汽车可按动力驱动方式分为串联式混合动力电动汽车(SHEV)和并联式 混合动力电动汽车(PHEV)。本文研究对象是SHEV。SHEV的特点适合城市行驶中频繁起动、加速和低速运行工况,可使发动机在最佳工况点附近稳定运 转,通过调整蓄电池和电动机的输出来达到调整车速的目的,从而提高在复杂工况下行驶的车辆的燃油经济性,同时降低排放。在电池的荷电状态(SOC)较高时 还可以关闭发动机,只利用电机进行功率输出,使发动机避免在怠速和低速工况下运行,提高发动机的效率,减少有害物质的排放。
混合动力车需根据不同的行车状况,以及动力电池的实时参数来决定其相应的控制策略。“动力控制策略系统”分析和处理来自运行状况监控系统的数据,判断此时的 电动机应该处于发动机工作模式、动力电池工作模式,或者是协同工作模式,然后发出相应的控制命令。研究表明,好的系统控制策略应是使发动机工作在其最大负 荷的50%~65%,同时需要兼顾汽车的动力性。
策略控制的一个重要依据是动力电池的SOC值,当SOC值处于正常工作区 (30%~75%),动力电池放电电流处于20~65 A范围内,如果此时驾驶员对汽车加速的要求低于30%,可采用动力电池驱动车辆。当驾驶员对加速的要求为30%~65%,可利用此时发动机释放的多余能量 给动力电池充电。当驾驶员对加速的要求为65%~80%,由发动机独立驱动汽车,直到其最大输出功率。当加速要求大于80%,可由发动机和动力电池同时驱 动车辆。
另外,需考虑到动力电池安全性和寿命,当其SoC值变化超出了上述范围,需及时合理地发出相应的控制命令。当SOC大于80% 时,动力电池强制放电,控制系统需改变此时的动力混合度的比例,提高动力电池的占总输出功率的比例,此时不再收回发动机产生的富裕能量。当SOC小于 20%,动力电池进入强制充电模式,此时由发动机的输出功率的一部分要用于动力电池充电,汽车此时完全由发动机驱动。
运行状况监控系统
“运行状况的监控系统”具备采集动力电池的电流、电压、温度,以及车辆的刹车信号、离合器压力信号、行车速度等,准确地获取这些信号是实现混合动力驱动汽车的 关键所在。该系统采用两片TLE4275和一片LM2577作为系统的供电模块,输入电压为6~18 V,可满足车辆启动和特殊情况下导致的蓄电池输出电压不稳定而导致的监控系统瘫痪。
1 信号通道
处理器系统将采集 到的各种信号进行处理后,送至上层的动力策略控制系统,并且上层的控制信号也要传送至底层。本系统采用两路CAN收发器完成这一任务。采用CAN总线技 术,不仅组网自由,扩展性强,实时性好,可靠性高,而且具有自诊断和监控能力,它是一种十分有效的通信方式。CAN总线具有以下特点:
(1)无破坏性地基于优先权竞争的总线仲裁;
(2)可借助接收滤波的多地址帧传送;
(3)具有错误检测与出错帧自动重发送功能;
(4)数据传送方式可分为数据广播式和远程数据请求式。
另外,系统还具有一路RS 232收发器,主要用于设计过程中的调试和产品生产过程中的质量检查。
2 电池电压和温度的测量
动力电池电压的测量方式取决于动力电池的具体情况,本系统采用镍氢电池,可分为12组电池,每一组电池包括10节小电池,每节电池电压1.2 V,所以每组电压为12 V,总电压为144 V。为确保测量系统适用于不同的工作状况,尤其是考虑到充电时电池电压会适当上升,特殊情况时电压可能达到20 V,因此设计的测量范围应为0~20 V。
温度的测量采用数字温度传感器DS1860,这种传感器可以采用多路传感器,共一条数据线和一条电源线以及一条地线,具备操作简单,占用输入口少的优点。
3 充放电电流测量
动力电池充放电的大电流的测量可采用两种方式,最常见的就是采用霍尔传感器。因此选择合适的霍尔传感器是精确测量电路的关键。霍尔传感器的磁场灵敏度或者称 磁场的开起点要与电机型号和结构相匹配。不同的电机型号和不同的电机设计结构转子磁场有不同的磁场分布和磁场分布涨落。如果霍尔传感器的磁灵敏度太高或者 太低,由于转子磁钢和磁钢缝隙磁场分布的不规则涨落,会导致位置传感器给出错误的信号。
此外,还要考虑霍尔传感器芯片的抗静电能力,霍尔传感器芯片的抗浪涌电压或抗浪涌电流能力。本文研究的系统采用型号为UGN3503UA的霍尔传感器。在测量电路的设计中需注意的是该传感器的输出为毫安级电流,因此必须选择合适的输入电阻将其转化为电压信号,并采用精度较高的放大、采样电路。